Microplastics in Wastewater and Drinking Water Treatment Plants: Occurrence and Removal of Microfibres

Author:

Sol DanielORCID,Laca AmandaORCID,Laca AdrianaORCID,Díaz Mario

Abstract

Microplastics (MPs), and specifically microfibres (MPFs), are ubiquitous in water bodies, including wastewater and drinking water. In this work, a thorough literature review on the occurrence and removal of MPs, and specifically MPFs in WWTPs and DWTPs, has been carried out. When the water is treated, an average microfiber removal efficiency over 70% is achieved in WWTPs and DWTPs. These high percentages are still inefficient for avoiding the presence of a large number of microfibres in treated wastewater and also in tap water. RSF, DAF, oxidation ditch and CAS processes have been described as the most efficient treatments for eliminating MPFs from wastewater treatment. It is remarkable the wide range of the data reported on this topic; for example, treated wastewater contains between not detected and 347 MPFs/L, whereas tap water contains between not detected and 168 MPFs/L. Microfibres constitute more than half of the MPs found in treated wastewater and sewage sludge, whereas in DWTP effluents the percentage of MPFs is around 32%. Nevertheless, the relative amount of MPFs reported in tap water is notably higher (71%). Microfibres from WWTPs are discharged to the environment, being a source of MP pollution. Additionally, MPs released by DWTPs directly enter the drinking water lines, which constitute a direct route for MP human consumption, so that it has been estimated that an adult may ingest an average value of 7500 MPFs per year only via tap water. Thus, this review provides an update on the performance of WWTPs and DWTPs in removing MPs from water, which is an issue of great interest.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3