Evaluation of Satellite-Based Algorithms to Retrieve Chlorophyll-a Concentration in the Canadian Atlantic and Pacific Oceans

Author:

Clay StephanieORCID,Peña AngelicaORCID,DeTracey Brendan,Devred EmmanuelORCID

Abstract

Remote-sensing reflectance data collected by ocean colour satellites are processed using bio-optical algorithms to retrieve biogeochemical properties of the ocean. One such important property is the concentration of chlorophyll-a, an indicator of phytoplankton biomass that serves a multitude of purposes in various ocean science studies. Here, the performance of two generic chlorophyll-a algorithms (i.e., a band ratio one, Ocean Colour X (OCx), and a semi-analytical one, Garver–Siegel Maritorena (GSM)) was assessed against two large in situ datasets of chlorophyll-a concentration collected between 1999 and 2016 in the Northeast Pacific (NEP) and Northwest Atlantic (NWA) for three ocean colour sensors: Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS), and Visible Infrared Imaging Radiometer Suite (VIIRS). In addition, new regionally-tuned versions of these two algorithms are presented, which reduced the mean error (mg m−3) of chlorophyll-a concentration modelled by OCx in the NWA from −0.40, −0.58 and −0.45 to 0.037, −0.087 and −0.018 for MODIS, SeaWiFS, and VIIRS respectively, and −0.34 and −0.36 to −0.0055 and −0.17 for SeaWiFS and VIIRS in the NEP. An analysis of the uncertainties in chlorophyll-a concentration retrieval showed a strong seasonal pattern in the NWA, which could be attributed to changes in phytoplankton community composition, but no long-term trends were found for all sensors and regions. It was also found that removing the 443 nm waveband for the OCx algorithms significantly improved the results in the NWA. Overall, GSM performed better than the OCx algorithms in both regions for all three sensors but generated fewer chlorophyll-a retrievals than the OCx algorithms.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3