Tracking Reforestation in the Loess Plateau, China after the “Grain for Green” Project through Integrating PALSAR and Landsat Imagery

Author:

Zhou Hui,Xu Fu,Dong JinweiORCID,Yang Zhiqi,Zhao GuosongORCID,Zhai Jun,Qin Yuanwei,Xiao XiangmingORCID

Abstract

An unprecedented reforestation process happened in the Loess Plateau, China due to the ecological restoration project ‘Grain for Green Project’, which has affected regional carbon and water cycles as well as brought climate feedbacks. Accurately mapping the area and spatial distribution of emerged forests in the Loess Plateau over time is essential for forest management but a very challenging task. Here we investigated the changes of forests in the Loess Plateau after the forest reconstruction project. First, we used a pixel and rule-based algorithm to identify and map the annual forests from 2007 to 2017 in the Loess Plateau by integrating 30 m Landsat data and 25 m resolution PALSAR data in this study. Then, we carried out the accuracy assessment and comparison with several existing forest products. The overall accuracy (OA) and Kappa coefficient of the resultant map, were about 91% and 0.77 in 2010, higher than those of the other forest products (FROM-GLC, GlobeLand30, GLCF-VCF, JAXA, and OU-FDL) with OA ranging from 83.57% to 87.96% and Kappa coefficients from 0.52 to 0.68. Based on the annual forest maps, we found forest area in the Loess Plateau has increased by around 15,000 km2 from 2007 to 2017. This study clearly demonstrates the advantages of data fusion between PALSAR and Landsat images for monitoring forest cover dynamics in the Loess Plateau, and the resultant forest maps with lower uncertainty would contribute to the regional forest management.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference56 articles.

1. Conservation policy and the measurement of forests

2. Mapping forests in monsoon Asia with ALOS PALSAR 50-m mosaic images and MODIS imagery in 2010

3. CO2 emissions from forest loss

4. New Satellites Help Quantify Carbon Sources and Sinks

5. A policy-driven large scale ecological restoration: Quantifying ecosystem services changes in the Loess Plateau of China;Lu;PLos ONE,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3