Abstract
Aerosol optical depth (AOD) derived from satellite remote sensing is widely used to estimate surface PM2.5 (dry mass concentration of particles with an in situ aerodynamic diameter smaller than 2.5 µm) concentrations. In this research, a two-stage spatio-temporal statistical model for estimating daily surface PM2.5 concentrations in the Guanzhong Basin of China is proposed, using 6 km × 6 km AOD data available from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument as the main variable and meteorological factors, land-cover, and population data as auxiliary variables. The model is validated using a cross-validation method. The linear mixed effects (LME) model used in the first stage could be improved by using a geographically weighted regression (GWR) model or the generalized additive model (GAM) in the second stage, and the predictive capability of the GWR model is better than that of GAM. The two-stage spatio-temporal statistical model of LME and GWR successfully captures the temporal and spatial variations. The coefficient of determination (R2), the bias and the root-mean-squared prediction errors (RMSEs) of the model fitting to the two-stage spatio-temporal models of LME and GWR were 0.802, −0.378 µg/m3, and 12.746 µg/m3, respectively, and the model cross-validation results were 0.703, 1.451 µg/m3, and 15.731 µg/m3, respectively. The model prediction maps show that the topography has a strong influence on the spatial distribution of the PM2.5 concentrations in the Guanzhong Basin, and PM2.5 concentrations vary with the seasons. This method can provide reliable PM2.5 predictions to reduce the bias of exposure assessment in air pollution and health research.
Funder
Fundamental Research Funds for the Central Universities
China Scholarship Council
Subject
General Earth and Planetary Sciences
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献