Robot-Assisted Floor Surface Profiling Using Low-Cost Sensors

Author:

Wilson Scott,Potgieter Johan,Arif Khalid MahmoodORCID

Abstract

Low cost and accurate 3D surface profiling can help in numerous industry applications including inspection tasks, cleaning, minimizing bumps in navigation of non-uniform terrain, aid navigation, and road/pavement condition analysis. However, most of the available systems are costly or inaccessible for widespread use. This research presents investigation into the capability of cheap and accessible sensors to capture the floor surface profile information. A differential drive robotic platform has been developed to perform testing and conduct the research. 2D localization methods are extrapolated into 3D for the floor capturing process. Two different types of sensors, a 2D laser scanner and an RGB-D camera, are used for comparison of the floor profile capture ability. The robotic system is able to successfully capture the floor surface profile of a number of different type floors such as carpet, asphalt, and a coated floor. A key finding is that the surface itself is a significant factor on the measured profile, i.e. dirt or differing materials can cause false height measurements. Overall the methodology has proved a successful real time solution for creating a point cloud of the floor surface.

Funder

Ministry of Business, Innovation and Employment

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Applicability of smart construction technology: Prioritization and future research directions;Automation in Construction;2023-09

2. Increased plane identification precision with stereo identification;Robotica;2023-06-19

3. Benefits of Terrestrial Laser Scanning for Construction QA/QC: A Time and Cost Analysis;Journal of Management in Engineering;2022-03

4. Autonomous recognition technology of carrier robot on various terrain environment;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2021-02-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3