High-Resolution Sea Surface Temperature Retrieval from Landsat 8 OLI/TIRS Data at Coastal Regions

Author:

Jang Jae-CheolORCID,Park Kyung-AeORCID

Abstract

High-resolution sea surface temperature (SST) images are essential to study the highly variable small-scale oceanic phenomena in a coastal region. Most previous SST algorithms are focused on the low or medium resolution SST from the near polar orbiting or geostationary satellites. The Landsat 8 Operational Land Imager and Thermal Infrared Sensor (OLI/TIRS) makes it possible to obtain high-resolution SST images of coastal regions. This study performed a matchup procedure between 276 Landsat 8 images and in-situ temperature measurements of buoys off the coast of the Korean Peninsula from April 2013 to August 2017. Using the matchup database, we investigated SST errors for each formulation of the Multi-Channel SST (MCSST) and the Non-Linear SST (NLSST) by considering the satellite zenith angle (SZA) and the first-guess SST. The retrieved SST equations showed a root-mean-square error (RMSE) from 0.59 to 0.72 °C. The smallest errors were found for the NLSST equation that considers the SZA and uses the first-guess SST, compared with the MCSST equations. The SST errors showed characteristic dependences on the atmospheric water vapor, the SZA, and the wind speed. In spite of the narrow swath width of the Landsat 8, the effect of the SZA on the errors was estimated to be significant and considerable for all the formations. Although the coefficients were calculated in the coastal regions around the Korean Peninsula, these coefficients are expected to be feasible for SST retrieval applied to any other parts of the global ocean. This study also addressed the need for high-resolution coastal SST, by emphasizing the usefulness of the high-resolution Landsat 8 OLI/TIRS data for monitoring the small-scale oceanic phenomena in coastal regions.

Funder

Korea Meteorological Administration

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3