NLP-Based Approach for Predicting HMI State Sequences Towards Monitoring Operator Situational Awareness

Author:

V. P. Singh HarshORCID,Mahmoud Qusay H.ORCID

Abstract

A novel approach presented herein transforms the Human Machine Interface (HMI) states, as a pattern of visual feedback states that encompass both operator actions and process states, from a multi-variate time-series to a natural language processing (NLP) modeling domain. The goal of this approach is to predict operator response patterns for n − a h e a d time-step window given k − l a g g e d past HMI state patterns. The NLP approach offers the possibility of encoding (semantic) contextual relations within HMI state patterns. Towards which, a technique for framing raw HMI data for supervised training using sequence-to-sequence (seq2seq) deep-learning machine translation algorithms is presented. In addition, a custom Seq2Seq convolutional neural network (CNN) NLP model based on current state-of-the-art design elements such as attention, is compared against a standard recurrent neural network (RNN) based NLP model. Results demonstrate comparable effectiveness of both the designs of NLP models evaluated for modeling HMI states. RNN NLP models showed higher ( ≈ 26 % ) forecast accuracy, in general for both in-sample and out-of-sample test datasets. However, custom CNN NLP model showed higher ( ≈ 53 % ) validation accuracy indicative of less over-fitting with the same amount of available training data. The real-world application of the proposed NLP modeling of industrial HMIs, such as in power generating stations control rooms, aviation (cockpits), and so forth, is towards the realization of a non-intrusive operator situational awareness monitoring framework through prediction of HMI states.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference50 articles.

1. International Nuclear Event Scale (INES)https://www.iaea.org/resources/databases/international-nuclear-and-radiological-event-scale

2. INSAG-7 Safety Report The Chernobyl Accident (circa 1992)http://www-pub.iaea.org

3. Lessons from the 1979 Accident at Three Mile Island (Circa 2019)https://www.nei.org/resources/fact-sheets/lessons-from-1979-accident-at-three-mile-island

4. Human Performance Consequences of Automated Decision Aids

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3