Abstract
This paper focuses on the search for novel insulating structures, and the generation of them by means of a state-of-the-art manufacturing method—3D printing. Bionic structures, which are successfully used in many branches of technology, were chosen as the source of inspiration for the research. The paper presents a design of spatial structures with a gyroid infill (e.g., TPMS), the shape of which reflects the bionic structure of the inside of a bone. For SLS printed single- and multi-layered structures, the design value of the thermal conductivity coefficient was determined through measurements and calculations. A statistical analysis was carried out to determine the effect of the direction of heat flow, as well as the internal structure and layering of the prototype materials, on the values of the thermal conductivity coefficient and the thermal resistance coefficient. On the basis of the multicriteria analysis, the composite’s optimal composition according to the adopted optimization criteria was determined. The lowest possible thermal conductivity of the insulation was equal to 0.033 W/(m·K). The highest possible thermal resistance was equal to 0.606 m2·K/W. Thermal insulation made of the prototype insulating partitions with a gyroidal structure is characterized by good insulating parameters.
Subject
General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献