Crystallographic Calculations and First-Principles Calculations of Heterogeneous Nucleation Potency of γ-Fe on La2O2S Particles

Author:

Zhou Yin,Ji Yunping,Li Yiming,Qi Jianbo,Xin Haohao,Ren Huiping

Abstract

Rare earth (RE) inclusions with high melting points as heterogeneous nucleation in liquid steel have stimulated many recent studies. Evaluating the potency of RE inclusions as heterogeneous nucleation sites of the primary phase is still a challenge. In this work, the edge-to-edge matching (E2EM) model was employed to calculate the atomic matching mismatch and predict the orientation relationship between La2O2S and γ-Fe from a crystallographic point of view. A rough orientation relationship (OR) was predicted with the minimum values of fr=9.43% and fd=20.72% as follows: [21¯1¯0]La2O2S∥[100]γ-Fe and (0003¯)La2O2S∥(002¯)γ-Fe. The interface energy and bonding characteristics between La2O2S and γ-Fe were calculated on the atomic scale based on a crystallographic study using the first-principles calculation method. The calculations of the interface energy showed that the S-terminated and La(S)-terminated interface structures were more stable. The results of difference charge density, electron localization function (ELF), the Bader charges and the partial density of states (PDOS) study indicated that the La(S)-terminated interface possessed metallic bonds and ionic bonds, and the S-terminated interface exhibited metallic bond and covalent bond characteristics. This work addressed the stability and the characteristics of the La2O2S/γ-Fe interface structure from the standpoint of crystallography and energetics, which provides an effective theoretical support to the study the heterogeneous nucleation mechanism. As a result, La2O2S particles are not an effective heterogeneous nucleation site for the γ-Fe matrix from crystallography and energetics points of view.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3