Abstract
In this work, the corrosion properties of 316L stainless steel (SS) obtained by selective laser melting (SLM) are analyzed. The electrochemical results of samples manufactured with an energy density between 40 and 140 J/mm3 are compared using different hatch distances and laser speeds. The analysis correlates the impact of the microstructure and processing defects of SLM 316L stainless steel on its behavior against corrosion. The optimal manufacturing conditions were selected considering the electrochemical results. Although the samples obtained with an energy density close to 90 J/mm3 show a high resistance to corrosion, their performance depends on the combination of selected parameters, obtaining the best results for an intermediate laser speed and a low hatch distance. These manufacturing conditions produce a higher breakdown potential, a faster repassivation of the steel and reduce the current density on electrochemical test.
Subject
General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献