Evaluating Virtual Hand Illusion through Realistic Appearance and Tactile Feedback

Author:

Cui DixuanORCID,Mousas ChristosORCID

Abstract

We conducted a virtual reality study to explore virtual hand illusion through three levels of appearance (Appearance dimension: realistic vs. pixelated vs. toon hand appearances) and two levels of tactile feedback (Tactile dimension: no tactile vs. tactile feedback). We instructed our participants to complete a virtual assembly task in this study. Immediately afterward, we asked them to provide self-reported ratings on a survey that captured presence and five embodiment dimensions (hand ownership, touch sensation, agency and motor control, external appearance, and response to external stimuli). The results of our study indicate that (1) tactile feedback generated a stronger sense of presence, touch sensation, and response to external stimuli; (2) the pixelated hand appearance provided the least hand ownership and external appearance; and (3) in the presence of the pixelated hand, prior virtual reality experience of participants impacted their agency and motor control and their response to external stimuli ratings. This paper discusses our findings and provides design considerations for virtual reality applications with respect to the realistic appearance of virtual hands and tactile feedback.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Computer Science Applications,Human-Computer Interaction,Neuroscience (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effects of Tactile Interruption on Hand-Eye Coordination Task Performance;2024 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW);2024-03-16

2. Exploring the effects of virtual hand appearance on midair typing efficiency;Computer Animation and Virtual Worlds;2023-05

3. Evaluation of an HMD-Based Multisensory Virtual Museum Experience for Enhancing Sense of Presence;IEEE Access;2023

4. Evaluating the Sense of Embodiment through Out-of-Body Experience and Tactile Feedback;Proceedings of the 18th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and its Applications in Industry;2022-12-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3