Enhancing Drought Tolerance in Wheat Cultivars through Nano-ZnO Priming by Improving Leaf Pigments and Antioxidant Activity

Author:

Abbas Syed Farhat1,Bukhari Muhammad Adnan1ORCID,Raza Muhammad Aown Sammar1,Abbasi Ghulam Hassan2,Ahmad Zahoor3ORCID,Alqahtani Mashael Daghash4ORCID,Almutairi Khalid F.5ORCID,Abd_Allah Elsayed Fathi5ORCID,Iqbal Muhammad Aamir6ORCID

Affiliation:

1. Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan

2. Institute of Agro-Industry and Environment, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan

3. Constituent College, University of Central Punjab, Yazman Road, Bahawalpur 63100, Pakistan

4. Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

5. Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia

6. Department of Agronomy, Faculty of Agriculture, University of Poonch Rawalakot, Rawalakot 12350, Pakistan

Abstract

Climate change, global warming, stagnant productivity of wheat and food security concerns owing to frequent spells of drought stress (DS) have necessitated finding biologically viable drought-mitigation strategies. A trial was conducted to test two promising wheat cultivars (Ujala-16 and Zincol-16) that were subjected to pre-sowing priming treatments with different doses of ZnO nanoparticles (NPs = 40, 80, 120 and 160 ppm) under 50% and 100% field capacity (FC) conditions. The ZnO NPs were prepared with a co-precipitation method and characterized through X-ray diffraction (XRD) and with a scanning electron microscope (SEM). For comparison purposes, untreated seeds were sown as the control treatment. The response variables included botanical traits (lengths, fresh and dry wrights of root and shoot), chlorophyll (a, b and total) contents, antioxidant and proline contents and nutrients status of wheat cultivars. The results showed that DS significantly decreased all traits of wheat cultivars, while ZnO NPs, especially the 120 ppm dose, remained superior by increasing all botanical traits at 100% FC. In addition, ZnO NPs increased the chlorophyll a (1.73 mg/g FW in Ujala-16 and 1.75 mg/g FW in Zincole-16) b (0.70 mg/g FW in Ujala-16 and 0.71 mg/g FW in Zincole-16) and total chlorophyll content (2.43 mg/g FW in Ujala-16 and 2.46 mg/g FW in Zincole-16) by improving the activity of antioxidant and proline content. Moreover, plant nutrients such as Ca, Mg, Fe, N, P, K, and Zn contents were increased by ZnO NPs, especially in the Zincol-16 cultivar. To summarize, Zincol-16 remains superior to Ujala-16, while ZnO NPs (120 ppm dose under 100% FC) increases the growth and mineral contents of both wheat varieties. Thus, this combination might be recommended to wheat growers after testing further in-depth evaluation of more doses of ZnO NPs.

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3