Prioritization of Waste-to-Energy Technologies Associated with the Utilization of Food Waste

Author:

Torres-Lozada Patricia1ORCID,Manyoma-Velásquez Pablo2ORCID,Gaviria-Cuevas Jenny Fabiana2

Affiliation:

1. Study and Control of Environmental Pollution—ECCA Research Group, Faculty of Engineering, Universidad del Valle, Cali 760001, Colombia

2. Logistic and Production (LOGYPRO) Research Group, Faculty of Engineering, Universidad del Valle, Cali 760001, Colombia

Abstract

Taking advantage of the growing production of organic waste for its conversion to waste-to-energy (WtE) also contributes to mitigating the problems associated with its final disposal, which is a global trend of increasing application. This work presents an innovative approach for the identification and prioritization of WtE alternatives available from the use of food waste (FW) present in the municipal solid waste (MSW) of a Colombian municipality with source separation and selective collection: (i) a systematic literature review, which allows one to identify WtE alternatives; (ii) the prospective MIC-MAC method (Matrice d’Impacts Croisés Multiplication Appliqués à un Classement) allowed the selection of criteria and sub criteria; (iii) the analytical hierarchical process (AHP) and the technique of order of preference by similarity to the ideal solution (TOPSIS), allowed a ranking of selected alternatives considering the technical, environmental, and social aspects. The WtE technologies identified were anaerobic digestion, gasification, incineration, biogas recovery from landfills, and pyrolysis; this last was excluded due to its greater application potential with substrates such as plastic waste. The six sub-criteria identified and prioritized were social acceptability (36%), greenhouse gas emissions mitigated (16.17%), MSW reduction (15.83%), energy production (13.80%), technological maturity (12.95%), and electrical energy conversion efficiency (5.25%), with the decreasing order of preferences of anaerobic digestion (78.2%), gasification (47.5%), incineration (27.4%), and biogas recovery from landfills (6.6%); the latter was the least desirable alternative (lower social acceptance and CO2 tons mitigated in relation to the other options). The innovative nature of this study is the identification and consideration of the comprehensive management of this type of waste of a large number of criteria (120 environmental, 52 social, and 59 technical) and the validation of the results through a sensitivity analysis, which allowed us to confirm for this study, that anaerobic digestion is the most favorable technology for the treatment and energy use of FW.

Funder

Universidad del Valle through time for teacher research, administrative, and technical support

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3