Abstract
This study presents a dual-frequency microchip laser with a thermo-optically and electro-optically tuned frequency difference. The dual-frequency microchip cavity is formed by bonding a Lithium tantalite (LiTaO3, LTO) crystal chip and a neodymium-doped yttrium aluminum garnet (Nd:YAG) crystal chip. A single longitudinal mode is generated by the Nd:YAG crystal and split into two frequencies with perpendicular polarizations due to birefringent effect in the LTO chip. Furthermore, continuous beat frequency tuning at different scales is realized by adjusting the temperature and voltage applied to the LTO crystal. A maximum beat frequency of up to 27 GHz is obtained, and the frequency difference lock-in phenomenon is observed below the frequency difference of 405 MHz.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献