Generalization of the Unified Analytic Melt-Shear Model to Multi-Phase Materials: Molybdenum as an Example

Author:

Burakovsky Leonid,Luscher Darby,Preston Dean,Sjue Sky,Vaughan Diane

Abstract

The unified analytic melt-shear model that we introduced a decade ago is generalized to multi-phase materials. A new scheme for calculating the values of the model parameters for both the cold ( T = 0 ) shear modulus ( G ) and the melting temperature at all densities ( ρ ) is developed. The generalized melt-shear model is applied to molybdenum, a multi-phase material with a body-centered cubic (bcc) structure at low ρ which loses its dynamical stability with increasing pressure (P) and is therefore replaced by another (dynamically stable) solid structure at high ρ . One of the candidates for the high- ρ structure of Mo is face-centered cubic (fcc). The model is compared to (i) our ab initio results on the cold shear modulus of both bcc-Mo and fcc-Mo as a function of ρ , and (ii) the available theoretical results on the melting of bcc-Mo and our own quantum molecular dynamics (QMD) simulations of one melting point of fcc-Mo. Our generalized model of G ( ρ , T ) is used to calculate the shear modulus of bcc-Mo along its principal Hugoniot. It predicts that G of bcc-Mo increases with P up to ∼240 GPa and then decreases at higher P. This behavior is intrinsic to bcc-Mo and does not require the introduction of another solid phase such as Phase II suggested by Errandonea et al. Generalized melt-shear models for Ta and W also predict an increase in G followed by a decrease along the principal Hugoniot, hence this behavior may be typical for transition metals with ambient bcc structure that dynamically destabilize at high P. Thus, we concur with the conclusion reached in several recent papers (Nguyen et al., Zhang et al., Wang et al.) that no solid-solid phase transition can be definitively inferred on the basis of sound velocity data from shock experiments on Mo. Finally, our QMD simulations support the validity of the phase diagram of Mo suggested by Zeng et al.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3