Abstract
Molecular-dynamics simulations are used for examining the microscopic details of the homogeneous melting of benzene phase I. The equilibrium melting temperatures of our model were initially determined using the direct-coexistence method. Homogeneous melting at a higher temperature is achieved by heating a defect- and surfacefree crystal. The temperature-dependent potential energy and lattice parameters do not indicate a premelting phase even under superheated conditions. Further, statistical analyses using induction times computed from 200 melting trajectories were conducted, denoting that the homogeneous melting of benzene occurs stochastically, and that there is no intermediate transient state between the crystal and liquid phases. Additionally, the critical nucleus size is estimated using the seeding approach, along with the local bond order parameter. We found that the large diffusive motion arising from defect migration or neighbor-molecule swapping is of little importance during nucleation. Instead, the orientational disorder activated using the flipping motion of the benzene plane results in the melting nucleus.
Funder
Japan Society for the Promotion of Science
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献