Abstract
The Li+- and K+-complexes of new discotic mesogens, where two n-alkoxy-substituted triphenylene cores are connected by a central crown ether (12-crown-4 and 18-crown-6), provide interesting structural and electronic properties. The inter- and intra-columnar structure was investigated by small and wide angle X-ray scattering. The electronic and ionic transports were studied by temperature dependent photoconductivity and impedance spectroscopy, respectively. Besides a strong increase of the stability and the width of the columnar phases the presence of soft anions (iodide, thiocyanate, tetrafluoroborate) leads to an improved intra-columnar order. The hereby shortened stacking-distance of the triphenylene cores leads to a significant increase of the photoconductivity in the columnar mesophase. Furthermore, the ionic conductivity of the new materials was investigated on macroscopically aligned thin films. The existence of channels for fast cation transport formed by the stacked crown ether moieties in the centre of each column can be excluded. The cations are coordinated strongly and therefore contributing only little to the conductivity. The ionic conductivity is dominated by the anisotropic migration of the non-coordinated anions through the liquid, like side chains favouring the propagation parallel to the columns. Iodide migrates about 20 times faster than thiocyanate and 100 times faster than tetrafluoroborate.
Funder
Deutsche Forschungsgemeinschaft
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献