Affiliation:
1. Power Economic Research Institute, State Grid Fujian Electric Power Company, Fuzhou 350001, China
2. State Grid Fujian Electric Power Company, Fuzhou 350001, China
Abstract
This paper analyzes the balanced interaction strategy of an integrated energy system (IES) operator and an industrial user in the operation process of the IES under the demand-side management (DSM) based on game theory. Firstly, we establish an electric–thermal IES, which includes a power grid, a heat grid and a natural gas grid. Secondly, a two-stage Stackelberg dynamic game model is proposed to describe the game behavior of IES operators and industrial users in the process of participating in DSM. The interactions between the IES operator (leader) and the user (follower) are formulated into a one-leader–one-follower Stackelberg game, where optimization problems are formed for each player to help select the optimal strategy. A pricing function is adopted for regulating time-of-use (TOU), which acts as a coordinator, inducing users to join the game. Then, for the complex two-stage dynamic game model established, the lower user-side constraint optimization problem is replaced by its KKT condition, so that the two-stage hierarchical optimization problem is transformed into a single-stage mixed-integer nonlinear optimization model, and the branch-and-bound method is introduced to solve it. Finally, the equilibrium strategies and income values of both sides of the game are obtained through a case simulation, and the dynamic equilibrium strategy curves under different capacity configurations are obtained through the sensitivity analysis of key parameters. The equilibrium income of the IES is USD 93.859, while the equilibrium income of industrial users in the park is USD 92.720. The simulation results show that the proposed method and model are effective.