Spectral Patterns of Pixels and Objects of the Forest Phytophysiognomies in the Anauá National Forest, Roraima State, Brazil

Author:

Condé Tiago Monteiro1ORCID,Higuchi Niro2,Lima Adriano José Nogueira2,Campos Moacir Alberto Assis2ORCID,Condé Jackelin Dias1,de Oliveira André Camargo1,de Miranda Dirceu Lucio Carneiro3

Affiliation:

1. Forest Management and Geotecnology Laboratory (LMFG), State University of Roraima (UERR), Av. Senador Helio Campos, Rorainópolis 69373-000, RR, Brazil

2. Forest Management Laboratory (LMF), National Institute of Amazonian Research (INPA), Av. André Araújo, Manaus 69060-001, AM, Brazil

3. Forest Management Laboratory (LMF), Federal University of Mato Grosso (UFMT), Av. Alexandre Ferronato, Sinop 78550-728, MT, Brazil

Abstract

Forest phytophysiognomies have specific spatial patterns that can be mapped or translated into spectral patterns of vegetation. Regions of spectral similarity can be classified by reference to color, tonality or intensity of brightness, reflectance, texture, size, shape, neighborhood influence, etc. We evaluated the power of accuracy of supervised classification algorithms via per-pixel (maximum likelihood) and geographic object-based image analysis (GEOBIA) for distinguishing spectral patterns of the vegetation in the northern Brazilian Amazon. A total of 280 training samples (70%) and 120 validation samples (30%) of each of the 11 vegetation cover and land-use classes (N = 4400) were classified based on differences in their visible (RGB), near-infrared (NIR), and medium infrared (SWIR 1 or MIR) Landsat 8 (OLI) bands. Classification by pixels achieved a greater accuracy (Kappa = 0.75%) than GEOBIA (Kappa = 0.72%). GEOBIA, however, offers a greater plasticity and the possibility of calibrating the spectral rules associated with vegetation indices and spatial parameters. We conclude that both methods enabled precision spectral separations (0.45–1.65 μm), contributing to the distinctions between forest phytophysiognomies and land uses—strategic factors in the planning and management of natural resources in protected areas in the Amazon region.

Funder

Coordenação de Aperfeicoamento de Pessoal de Nível Superior

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3