Boosting C Sequestration and Land Restoration through Forest Management in Tropical Ecosystems: A Mini-Review

Author:

Koutika Lydie-StellaORCID

Abstract

Soil has a major role in sequestering atmospheric CO2. This has further benefits and potential to improve soil fertility and food production, mitigate climate change, restore land degradation, and conserve ecosystem biodiversity. However, its health is increasingly being threatened by the growing population, land degradation and climate change effects. Despite its importance, soil organic carbon (SOC) is understudied in the tropics. This paper reviews how managing forests in tropical ecosystems can benefit SOC sequestration and land restoration. Sequestered SOC has the potential to improve soil fertility, as well as to reduce both land degradation and atmospheric CO2 emissions. It further improves soil structure, aggregation and water infiltration, enhances soil faunal activity and boosts nutrient cycling (C, N, P and S). Managing forest ecosystems is crucial to boost C sequestration, mitigate climate change and restore degraded lands, besides other ecosystem services they provide. Apart from managing natural forests and planted forests, afforesting, reforesting marginal or degraded lands especially when associated with specific practices (organic residue management, introducing nitrogen-fixing species) boost C storage (in both soil and biomass) and foster co-benefits as soil health improvement, food production, land restoration and mitigation of climate change. Improved soil health as a result of sequestered C is confirmed by enhanced physical, biological and chemical soil fertility (e.g., sequestered C stability through its link to N and P cycling driven by soil biota) which foster and sustain soil health.

Publisher

MDPI AG

Subject

General Medicine

Reference123 articles.

1. Global Forest Resources Assessment 2020,2020

2. How Are the World’s Forests Changing? Global Forest Resources Assessment 2015,2016

3. The State of the World’s Forests 2020

4. A Large and Persistent Carbon Sink in the World’s Forests

5. The Role of Forests in Carbon Cycles, Sequestration, and Storage 4; Forest Management and Carbon Sequestration http://www.iufro.org/science/taskforces/carbon-sequestration/

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3