Shredding Roller Effect on the Cannabis sativa L. Residues and Environment

Author:

Naujokienė Vilma1ORCID,Lekavičienė Kristina1ORCID,Eigirdas Eimantas1,Šarauskis Egidijus1ORCID

Affiliation:

1. Department of Agricultural Engineering and Safety, Agriculture Academy, Vytautas Magnus University, Studentu Str. 15A, LT-53362 Akademija, Lithuania

Abstract

Fiber cannabis has been grown in Lithuania for a long time, but its cultivation technologies have not been widely studied. However, the growing population and consumption forces us to look to alternatives and to make efforts and find solutions to facilitate the cultivation of fiber cannabis because the use of fiber cannabis can be for many different types of products. The aim of the study was to evaluate the impact of the interaction of fibrous cannabis (Cannabis sativa L.) residue and soil on the mechanical properties of the residue and the environment in cultivation technology using a shredding roller. The study determined the effect of the shredding roller on the moisture content of cannabis residues, lignin content, visual changes, and mechanical characteristics of breaking and cutting. Examining cannabis residues according to the dominant different diameters of 5-, 8-, and 10-mm organic cannabis residues, it was found that the highest efficiency of the shredding roller is when rolling 5 mm diameter cannabis residue stems. The efficiency of the shredding roller for reducing the mechanical characteristics of cannabis residues and the need for shredding force was up to 20.78%. The results obtained are significant if the cannabis crop used with the shredding roller is organic, as the smallest diameter plant residues would be the most abundant. Studies have concluded that the moisture content of cannabis residues, the visual changes, and the need for crushing force prove the efficiency of the shredding roller, and the cannabis cultivation technology influences the decomposition of cannabis residues.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3