Affiliation:
1. Key Laboratory of Nano-Minerals, Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
2. Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
Abstract
Photocatalysis is considered a promising method for wastewater treatment; however, most synthesized photocatalysts have complex structures and are costly. Thus, in this study, a novel CaWO4 sample was synthesized by a co-precipitation method in one step. The characteristic results show that CaWO4 has good dispersibility, a large specific surface area, and good photoresponse under UV light. The synthesized CaWO4 can be used to degrade methylene blue (MB) and carmine (CR) under UV light without the addition of oxidants. The effects of a water matrix, including pH value, solid–liquid ratio, light intensity, and initial concentration of pollutants on photocatalytic degradation were studied. According to the optimization of these factors, the optimal photocatalytic degradation condition was found under the catalyst concentration of 1.0 g/L and ultraviolet light intensity of 80 W. The optimal pH is 8.2 for the MB system and 6.0 for the CR system. The optimal photocatalytic degradation of MB and CR at 100 mg/L can be achieved as 100%. According to the results of scavenger experiments, holes and hydroxyl radicals dominate the degradation of MB while hydroxyl radicals and superoxide anions are mainly responsible for the degradation of CR. Further analyses showed that photogenerated electrons generated on the surface of the CaWO4 can form electron–hole pairs, thereby producing hydroxyl radicals and superoxide anions to degrade dyes. In addition, the CaWO4 has a good cycling performance in the process of degrading MB (more than 80% after five cycles). It provides a new idea for the photocatalytic degradation of dyes using mineral-like materials.
Funder
Anhui Provincial Natural Science Foundation
Hefei Municipal Natural Science Foundation
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献