Fabrication of Ni−MOF−74@PA−PEI for Radon Removal under Ambient Conditions

Author:

Liu Xi12,Sun Yuan2,Wang Chunlai2,Lv Li2,Liang Yun1

Affiliation:

1. School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China

2. State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China

Abstract

Radon is one of the 19 carcinogenic substances identified by the World Health Organization, posing a significant threat to human health and the environment. Properly removing radon under ambient conditions remains challenging. Compared with traditional radon−adsorbent materials such as activated carbon and zeolite, metal–organic framework (MOF) materials provide a high specific surface area, rich structure, and designability. However, MOF material powders demonstrate complications regarding practical use, such as easy accumulation, deactivation, and difficult recovery. Ni−MOF−74 was in situ grown on a porous polyacrylic acid (PA) spherical substrate via stepwise negative pressure impregnation. Ni−MOF−74 was structured as one−dimensional rod−shaped crystals (200–300 nm) in large−pore PA microspheres, whose porous structure increased the diffusion of radon gas. The radon adsorption coefficient of a Ni−MOF−74@PA−polyethyleneimine composite material was 0.49 L/g (293 K, relative humidity of 20%, air carrier). In comparison with pristine Ni−MOF−74 powder, our composite material exhibited enhanced adsorption and longer penetration time. The radon adsorption coefficient of the composite material was found to be from one to two orders of magnitude higher than that of zeolite and silica gel. The proposed material can be used for radon adsorption while overcoming the formation problem of MOF powders. Our preparation approach can provide a reference for the composite process of MOFs and polymers.

Funder

Fundamental Research Funds from the State Key Laboratory of NBC Protection for Civilian

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3