A Novel Ultra Local Based-Fuzzy PIDF Controller for Frequency Regulation of a Hybrid Microgrid System with High Renewable Energy Penetration and Storage Devices

Author:

Yakout Ahmed H.1,AboRas Kareem M.2ORCID,Kotb Hossam2ORCID,Alharbi Mohammed3ORCID,Shouran Mokhtar4ORCID,Abdul Samad Bdereddin4ORCID

Affiliation:

1. Department of Electrical Engineering, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt

2. Department of Electrical Power and Machines, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt

3. Department of Electrical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia

4. Magnetics and Materials Research Group, School of Engineering, Cardiff University, Cardiff CF24 3AA, UK

Abstract

A new ultra-local control (ULC) model and two marine predator algorithm (MPA)-based controllers; MPA-based proportional-integral-derivative with filter (PIDF) and MPA-based Fuzzy PIDF (FPIDF) controllers; are combined to enhance the frequency response of a hybrid microgrid system. The input scaling factors, boundaries of membership functions, and gains of the FPIDF con-troller are all optimized using the MPA. In order to further enhance the frequency response, the alpha parameter of the proposed ULC model is optimized using MPA. The performance of the pro-posed controller is evaluated in the microgrid system with different renewable energy sources and energy storage devices. Furthermore, a comparison of the proposed MPA-based ULC-PIDF and ULC-FPIDF controllers against the previously designed controllers is presented. Moreover, a vari-ety of scenarios are studied to determine the proposed controller’s sensitivity and robustness to changes in wind speed, step loads, solar irradiance, and system parameter changes. The results of time-domain simulations performed in MATLAB/SIMULINK are shown. Finally, the results demonstrate that under all examined conditions, the new ULC-based controllers tend to further enhance the hybrid microgrid system’s frequency time response.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3