Enhanced Cyber Attack Detection Process for Internet of Health Things (IoHT) Devices Using Deep Neural Network

Author:

Vijayakumar Kedalu Poornachary1,Pradeep Krishnadoss1,Balasundaram Ananthakrishnan2,Prusty Manas Ranjan2

Affiliation:

1. School of Computer Science and Engineering, Vellore Institute of Technology, Chennai 600127, India

2. Center for Cyber Physical Systems, School of Computer Science and Engineering, Vellore Institute of Technology, Chennai 600127, India

Abstract

Internet of Health Things plays a vital role in day-to-day life by providing electronic healthcare services and has the capacity to increase the quality of patient care. Internet of Health Things (IoHT) devices and applications have been growing rapidly in recent years, becoming extensively vulnerable to cyber-attacks since the devices are small and heterogeneous. In addition, it is doubly significant when IoHT involves devices used in healthcare domain. Consequently, it is essential to develop a resilient cyber-attack detection system in the Internet of Health Things environment for mitigating the security risks and preventing Internet of Health Things devices from becoming exposed to cyber-attacks. Artificial intelligence plays a primary role in anomaly detection. In this paper, a deep neural network-based cyber-attack detection system is built by employing artificial intelligence on latest ECU-IoHT dataset to uncover cyber-attacks in Internet of Health Things environment. The proposed deep neural network system achieves average higher performance accuracy of 99.85%, an average area under receiver operator characteristic curve 0.99 and the false positive rate is 0.01. It is evident from the experimental result that the proposed system attains higher detection rate than the existing methods.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3