Investigating the Effect of Bi2MoO6/g-C3N4 Ratio on Photocatalytic Degradation of Sulfadiazine under Visible Light

Author:

Li Ke12,Chen Miaomiao1,Chen Lei1,Zhao Songying1,Xue Wencong1,Han Yanchao2

Affiliation:

1. Key Laboratory of Song Liao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China

2. State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China

Abstract

In this study, a series of Bi2MoO6/g-C3N4 composites were prepared through a wet-impregnation method, and their photocatalytic properties were investigated for the degradation of sulfadiazine (SDZ) under visible light irradiation. Physical and chemical characterizations were carried out using X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), photoluminescence spectroscopy (PL), UV-vis diffuse reflectance spectra (UV-vis), and electrochemical impedance spectra (EIS). Compared to pure g-C3N4, the introduction of Bi2MoO6 significantly enhanced the visible light responsive photocatalytic activity, with the 1:32 Bi2MoO6/g-C3N4 composite exhibiting the highest photodegradation efficiency towards SDZ under visible light irradiation with a photocatalytic efficiency of 93.88% after 120 min of visible light irradiation. The improved photocatalytic activity can be attributed to the formation of a heterojunction between Bi2MoO6 and g-C3N4, which promotes the transfer of photogenerated electron-hole pairs, thereby elevating its photocatalytic activity. The results suggest that Bi2MoO6/g-C3N4 composites have potential application for the degradation of sulfonamides in aquatic environments.

Funder

National Natural Science Foundation of China

Science and Technology Research Planning Project of Jilin Provincial Department of Education

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3