The Influences of Emulsification Variables on Emulsion Characteristics Prepared through the Phase Inversion Temperature Method as Engine Fuel

Author:

Lin Cherng-Yuan1ORCID,Lin Keng-Hung1,Yang Hsuan1

Affiliation:

1. Department of Marine Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan

Abstract

The effects of emulsification variables, such as surfactant type and heating/cooling emulsion processes, on the emulsification characteristics of silicone oil’s emulsions prepared by the phase inversion temperature method were investigated in this study. The water-in-oil (W/O) emulsions have been widely applied to enhance burning efficiency and reduce both pollutant emissions and fuel consumption. The silicone oil was emulsified with de-ionized water with the assistance of nonionic surfactants to form oil-in-water (O/W) emulsions. The hydrophilic–lipophilic balance (HLB) value of the Span 80 and Tween 20 surfactant mixture was set equal to 10 based on their weight proportions and the respective HLB values of the two surfactants. The experimental results show that the emulsions with the Span 80/Tween 20 surfactant mixture appeared to have a higher phase inversion temperature and a larger electrical conductance. On the other hand, it has a lower emulsification stability and a narrower range of phase inversion temperature than the emulsions prepared with a Brij 30 surfactant (polyoxyethylene (4) lauryl ether). The increase in surfactant concentration from 1 wt.% to 10 wt.% decreased the electrical conductance and phase inversion temperature while increasing the suspensibility and absorbance value for the emulsions prepared with either Span 80/Tween 20 mixture or Brij 30.

Funder

National Science and Technology Council

National Taiwan Ocean University, Taiwan

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3