Treatment of Motor Oil-Contaminated Soil with Green Surfactant Using a Mobile Remediation System

Author:

Silva Israel Gonçalves Sales da12ORCID,Pappalardo Juliano Rodrigues2,Rocha e Silva Nathália Maria Padilha da2ORCID,Converti Attilio3ORCID,Almeida Fabíola Carolina Gomes de2,Sarubbo Leonie Asfora24ORCID

Affiliation:

1. Universidade Federal Rural de Pernambuco, Rua Dom Manuel de Medeiros, s/n—Dois Irmãos, Recife 52171-900, PE, Brazil

2. Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50070-280, PE, Brazil

3. Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, University of Genoa (UNIGE), Via Opera Pia, n. 15, 16145 Genova, Italy

4. Escola Icam Tech, Universidade Católica de Pernambuco, Rua do Príncipe, n. 526, Boa Vista, Recife 50050-900, PE, Brazil

Abstract

Leak of fuels and lubricants occurring during exploration, distribution, refining and storage operations is the major cause of environmental pollution due to petroderivatives dispersion. The quick use of a series of physicochemical and biological techniques is needed to drastically reduce the magnitude of damage provoked by these pollutants. Among them, soil washing proved to be an effective alternative to the remediation of hydrocarbon-polluted sites, mainly if combined with surfactant utilization. However, the direct use of surfactants can lead to problems related to the toxicity and dispersion of the resulting by-products, as the majority of marketed surfactants are produced from oil derivatives. In this context, green surfactants appear as a promising alternative to their synthetic counterpart. In the present study, two green surfactants, i.e., a chemically synthesized biobased surfactant and a Starmerella bombicola biosurfactant, were applied in soil decontamination tests using a concrete mixer-type Mobile Soil Remediation System (MSRS). The system was designed and developed with 3D printing based on bench-scale results. A commercial biosurfactant was formulated based on the microbial surfactant, which was compared with the biobased surfactant in various experimental conditions. A set of factorial designs combined with Response Surface Methodology was used to select the optimal conditions for pollutant removal using the prototype. The following variables were tested: Surfactant type, Surfactant volume, Surfactant dilution, Contaminant concentration, Soil type, Soil mass, Washing duration, Tank tilt angle, Mixing speed, and Type of basket. Under the optimized experimental condition, the commercial biosurfactant allowed to remove 92.4% of the motor oil adsorbed in the sand. These results demonstrate the possibility of using natural surfactants and the development of novel mechanical technologies to degrade hydrocarbons with economic earnings for oil industry.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3