Abstract
The utilization of a high-volume of treated palm oil fuel ash (T-POFA) as a partial cement substitution is one of the solutions presented to reduce carbon dioxide emissions (CO2) and improve concrete sustainability. In this study, the Adaptive Neuro-Fuzzy Inference System (ANFIS) is adapted as an artificial neural network (ANN) modeling tool to predict the compressive strength of self-compacting concrete (SCC) containing T-POFA. The ANFIS model has been developed and validated using concrete mixtures incorporating 0%, 10 wt%, 20 wt%, 30 wt%, 50 wt%, 60 wt%, and wt 70% T-POFA as a replacement of ordinary Portland cement (OPC) at a constant water/binder (W/B) ratio of 0.35. The experimental data were divided into 70% training data and 30% testing data. The experimental results of self-compacting concrete (SCC) containing T-POFA ensured comparable or higher compressive strengths, especially at later ages, when compared to the control SCC. However, the prediction results of the compressive strength of SCC samples using the ANFIS model are very close to the experimental values. The developed ANFIS model showed a highly-efficient performance to predict the SCC compressive strength. In addition, the obtained accurate predicted results using the developed ANN model will significantly affect the current experimental protocols, especially for costly and unsafe experiments.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献