Early Dropout Prediction Model: A Case Study of University Leveling Course Students

Author:

Sandoval-Palis IvánORCID,Naranjo DavidORCID,Vidal JackORCID,Gilar-Corbi RaquelORCID

Abstract

The school-dropout problem is a serious issue that affects both a country’s education system and its economy, given the substantial investment in education made by national governments. One strategy for counteracting the problem at an early stage is to identify students at risk of dropping out. The present study introduces a model to predict student dropout rates in the Escuela Politécnica Nacional leveling course. Data related to 2097 higher education students were analyzed; a logistic regression model and an artificial neural network model were trained using four variables, which incorporated student academic and socio-economic information. After comparing the two models, the neural network, with an experimentally defined architecture of 4–7–1 architecture and a logistic activation function, was selected as the model that should be applied to early predict dropout in the leveling course. The study findings show that students with the highest risk of dropping out are those in vulnerable situations, with low application grades, from the Costa regime, who are enrolled in the leveling course for technical degrees. This model can be used by the university authorities to identify possible dropout cases, as well as to establish policies to reduce university dropout and failure rates.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference51 articles.

1. Factores que Inciden en la Deserción Estudiantil en el Programa Académico Administración de Empresas en la Universidad del Valle Sede Pacífico;Castrillón,2014

2. Variables associated with achievement in higher education: A systematic review of meta-analyses.

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3