Water-Energy Nexus: A Pathway of Reaching the Zero Net Carbon in Wastewater Treatment Plants

Author:

Del Río-Gamero BeatrizORCID,Ramos-Martín Alejandro,Melián-Martel NoemiORCID,Pérez-Báez Sebastián

Abstract

The water-energy nexus, together with the need for sustainable management of these interconnected resources, has attracted growing attention from the scientific community. This paper focuses on this nexus from the point of view of the energy that is required by wastewater treatment plants, which are intensive energy consumers and major emitters of greenhouse gases. The main objective of the study is to investigate the possible use of a wastewater plant’s internal chemical, potential, and kinetic energy, and the addition of external renewable technologies with a view to achieving clean energy consumption and reducing greenhouse gas emissions. For this purpose, an analysis is made of the feasibility of introducing alternative technologies—anaerobic digestion, hydraulic turbines, wind turbines, and photovoltaic modules— to meet the plant’s energy needs. The plant chosen as case study (Jinamar plant, Canary Islands, Spain) has an energy consumption of 2956 MWh/year, but the employed methodological framework is suitable for other plants in locations where the renewable energy potential has previously been analyzed. The results show that a renewable energy production of 3396 MWh/year can be obtained, more than enough to meet plant consumption, but also confirm the need for an energy storage system, due to seasonal variability in energy resource availability. In terms of climate change mitigation, the emission of 2754 tons/year of greenhouse gases is avoided. In addition, the economic viability of the proposed system is also confirmed.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference61 articles.

1. A review of the water-energy nexus

2. Análisis y Evaluación de Las Relaciones Entre El Agua y La Energía En España;Hardy,2010

3. The water–energy nexus in Middle East and North Africa

4. Global and Regional Evaluation of Energy for Water

5. World Energy Outlook 2016; Parishttps://www.iea.org/reports/world-energy-outlook-2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3