Abstract
Mining operations cause negative changes in the environment. Therefore, such areas require constant monitoring, which can benefit from remote sensing data. In this article, research was carried out on the environmental impact of underground hard coal mining in the Bogdanka mine, located in the southeastern Poland. For this purpose, spectral indexes, satellite radar interferometry, Geographic Information System (GIS) tools and machine learning algorithms were utilized. Based on optical, radar, geological, hydrological and meteorological data, a spatial model was developed to determine the statistical significance of the selected factors’ individual impact on the occurrence of wetlands. Obtained results show that Normalized Difference Vegetation Index (NDVI) change, terrain height, groundwater level and terrain displacement had a considerable influence on the occurrence of wetlands in the research area. Moreover, the machine learning model developed using the Random Forest algorithm allowed for an efficient determination of potential flooding zones based on a set of spatial variables, correctly detecting 76% area of wetlands. Finally, the GWR (Geographically Weighted Regression (GWR) modelling enabled identification of local anomalies of selected factors’ influence on the occurrence of wetlands, which in turn helped to understand the causes of wetland formation.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献