Novel Carbon Nanoparticles Derived from Biodiesel Soot as Lubricant Additives

Author:

Li ChuanORCID,Li Mingling,Wang Xinyun,Feng Weimin,Zhang Qiangqiang,Wu Bo,Hu XianguoORCID

Abstract

The objective of this study was to investigate the roles and tribological mechanisms of onion-like carbon nanoparticles derived from biodiesel soot (BDS) when applied in water (H2O) and liquid paraffin (LP). In this study, we prepared nitric acid-treated BDS (NA-BDS) as an additive to H2O and NA-BDS modified with oleylamine (NA-BDS-OLA) as an additive to LP. Raman spectroscopy, field-emission transmission electron microscopy, Fourier transform infrared spectroscopy, and zeta potentiometry were used to characterize the results of the nitric acid treatment and oleylamine modification. The tribological behaviors and corresponding mechanisms of the new onion-like carbon nanoparticles were evaluated using a ball-on-disc reciprocating tribometer, as well as field-emission scanning electron microscopy, three-dimensional laser scanning microscopy, and Raman spectroscopy. The results indicated that the additives NA-BDS and NA-BDS-OLA, which were onion-like carbon nanoparticles with sizes ranging from 35 to 40 nm, enhanced the antiwear and friction reduction properties of H2O and LP, respectively. Through tribo-mechanisms, these types of soot can serve as spacers and ball bearings between the rubbing surfaces. Moreover, exfoliation under a high load as a result of the formation of a graphitic layer facilitates easy shearing.

Funder

National Natural Science Foundation of China

Major Science and Technology Special Project in Anhui

Anhui Province University Natural Science Research Project

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3