The Study of Deep Level Traps and Their Influence on Current Characteristics of InP/InGaAs Heterostructures

Author:

Zhao Xiaohong,Lu Hongliang,Zhao Manli,Zhang Yuming,Zhang Yimen

Abstract

The damage mechanism of proton irradiation in InP/InGaAs heterostructures was studied. The deep level traps were investigated in detail by deep level transient spectroscopy (DLTS), capacitance–voltage (C–V) measurements and SRIM (the stopping and range of ions in matter, Monte Carlo code) simulation for non-irradiated and 3 MeV proton-irradiated samples at a fluence of 5 × 1012 p/cm2. Compared with non-irradiated samples, a new electron trap at EC-0.37 eV was measured by DLTS in post-irradiated samples and was found to be closer to the center of the forbidden band. The trap concentration in bulk, the interface trap charge density and the electron capture cross-section were 4 × 1015 cm−3, 1.8 × 1012 cm−2, and 9.61 × 10−15 cm2, respectively. The deep level trap, acting as a recombination center, resulted in a large recombination current at a lower forward bias and made the forward current increase in InP/InGaAs heterostructures for post-irradiated samples. When the deep level trap parameters were added into the technology computer-aided design (TCAD) simulation tool, the simulation results matched the current–voltage measurements data well, which verifies the validity of the damage mechanism of proton irradiation.

Funder

Advance Research Foundation of China

National Defense Advance Research project

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3