2D In-Plane CuS/Bi2WO6 p-n Heterostructures with Promoted Visible-Light-Driven Photo-Fenton Degradation Performance

Author:

Guo Li,Zhang Kailai,Han Xuanxuan,Zhao Qiang,Wang Danjun,Fu Feng

Abstract

Photo-Fenton degradation of pollutants in wastewater is an ideal choice for large scale practical applications. Herein, two-dimensional (2D) in-plane CuS/Bi2WO6 p-n heterostructures have been successfully constructed by an in situ assembly strategy and characterized using XRD, XPS, SEM/TEM, EDX, UV-Vis-DRS, PL, TR-PL, ESR, and VB-XPS techniques. The XPS and the TEM results confirm the formation of CuS/Bi2WO6 heterostructures. The as-constructed CuS/Bi2WO6 showed excellent absorption in visible region and superior charge carrier separation efficiency due to the formation of a type-II heterojunctions. Under visible light irradiation, 0.1% CuS/Bi2WO6 heterostructure exhibited the best photo-Fenton-like catalytic performance. The degradation efficiency of Rhodamine B (RhB, 20 mg·L−1) can reach nearly 100% within 25 min, the apparent rate constant (kapp/min−1) is approximately 40.06 and 3.87 times higher than that of pure CuS and Bi2WO6, respectively. The degradation efficiency of tetracycline hydrochloride (TC-HCl, 40mg·L−1) can reach 73% in 50 min by employing 0.1% CuS/Bi2WO6 heterostructure as a photo-Fenton-like catalyst. The promoted photo-Fenton catalytic activity of CuS/Bi2WO6 p-n heterostructures is partly ascribed to its low carriers recombination rate. Importantly, CuS in CuS/Bi2WO6 heterostructures is conducive to the formation of heterogeneous photo-Fenton catalytic system, in which Bi2WO6 provides a strong reaction site for CuS to avoid the loss of Cu2+ in Fenton reaction, resulting in its excellent stability and reusability. The possible photo-Fenton-like catalytic degradation mechanism of RhB and TC-HCl was also elucidated on the basis of energy band structure analysis and radical scavenger experiments. The present study provides strong evidence for CuS/Bi2WO6 heterostructures to be used as promising candidates for photo-Fenton treatment of organic pollutants.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3