Enhancement in Photoelectrochemical Performance of Optimized Amorphous SnS2 Thin Film Fabricated through Atomic Layer Deposition

Author:

Hu WeiguangORCID,Hien Truong Thi,Kim Dojin,Chang Hyo Sik

Abstract

Two-dimensional (2D) nanomaterials have distinct optical and electrical properties owing to their unique structures. In this study, smooth 2D amorphous tin disulfide (SnS2) films were fabricated by atomic layer deposition (ALD), and applied for the first time to photoelectrochemical water splitting. The optimal stable photocurrent density of the 50-nm-thick amorphous SnS2 film fabricated at 140 °C was 51.5 µA/cm2 at an oxygen evolution reaction (0.8 V vs. saturated calomel electrode (SCE)). This value is better than those of most polycrystalline SnS2 films reported in recent years. These results are attributed mainly to adjustable optical band gap in the range of 2.80 to 2.52 eV, precise control of the film thickness at the nanoscale, and the close contact between the prepared SnS2 film and substrate. Subsequently, the photoelectron separation mechanisms of the amorphous, monocrystalline, and polycrystalline SnS2 films are discussed. Considering above advantages, the ALD amorphous SnS2 film can be designed and fabricated according to the application requirements.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3