Abstract
Freshwater and hypersaline lakes in arid and semi-arid environments are crucial from agricultural, industrial, and ecological perspectives. The purpose of this paper was to investigate the effect of salinity on evaporation from water surfaces. The main achievement of this research is the successful capture of simulated climate–surface interactions prevalent in the Canadian Prairies using a custom-built bench-scale atmospheric simulator. Test results indicated that the evaporative flux has a large variation during spring (water/brine: 1452/764 10−4 g·s−1·m−2 and 613/230 × 10−4 g·s−1·m−2 night) and summer (1856/1187 × 10−4 g·s−1·m−2 day and 1059/394 × 10−4g·s−1·m−2 night), and small variation in the fall (1591/915 × 10−4 g·s−1·m−2 and 1790/1048 × 10−4 g·s−1·m−2 night). The primary theoretical contribution of this research is that the evaporation rate from distilled water is twice that of saturated brine. The measured data for water correlated well with mathematical estimates; data scatter was evenly distributed and within one standard deviation of the equality line, whereas the brine data mostly plotted above the equality line. The newly developed 2:1 water–brine correlation for evaporation was found to follow the combination equations with the Monteith model best matching the measurements.
Funder
Natural Sciences and Engineering Research Council of Canada
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献