Abstract
Automatic defect detection of tire has become an essential issue in the tire industry. However, it is challenging to inspect the inner structure of tire by surface detection. Therefore, an X-ray image sensor is used for tire defect inspection. At present, detection of defective tires is inefficient because tire factories commonly conduct detection by manually checking X-ray images. With the development of deep learning, supervised learning has been introduced to replace human resources. However, in actual industrial scenes, defective samples are rare in comparison to defect-free samples. The quantity of defective samples is insufficient for supervised models to extract features and identify nonconforming products from qualified ones. To address these problems, we propose an unsupervised approach, using no labeled defect samples for training. Moreover, we introduce an augmented reconstruction method and a self-supervised training strategy. The approach is based on the idea of reconstruction. In the training phase, only defect-free samples are used for training the model and updating memory items in the memory module, so the reproduced images in the test phase are bound to resemble defect-free images. The reconstruction residual is utilized to detect defects. The introduction of self-supervised training strategy further strengthens the reconstruction residual to improve detection performance. The proposed method is experimentally proved to be effective. The Area Under Curve (AUC) on a tire X-ray dataset reaches 0.873, so the proposed method is promising for application.
Funder
National Key Research and Development Plan of China
Major Scientific Project of Zhejiang Laboratory
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献