Capped Linex Metric Twin Support Vector Machine for Robust Classification

Author:

Wang Yifan,Yu Guolin,Ma Jun

Abstract

In this paper, a novel robust loss function is designed, namely, capped linear loss function Laε. Simultaneously, we give some ideal and important properties of Laε, such as boundedness, nonconvexity and robustness. Furthermore, a new binary classification learning method is proposed via introducing Laε, which is called the robust twin support vector machine (Linex-TSVM). Linex-TSVM can not only reduce the influence of outliers on Linex-SVM, but also improve the classification performance and robustness of Linex-SVM. Moreover, the effect of outliers on the model can be greatly reduced by introducing two regularization terms to realize the structural risk minimization principle. Finally, a simple and efficient iterative algorithm is designed to solve the non-convex optimization problem Linex-TSVM, and the time complexity of the algorithm is analyzed, which proves that the model satisfies the Bayes rule. Experimental results on multiple datasets demonstrate that the proposed Linex-TSVM can compete with the existing methods in terms of robustness and feasibility.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Ningxia Provincial of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference26 articles.

1. Statistical Learning Theory;Vapnik,1998

2. Knowledge-based analysis of microarray gene expression data by using support vector machines

3. Scattering transform and LSPTSVM based fault diagnosis of rotating machinery

4. Using one-class and two-class SVMs for multiclass image annotation

5. Support vector classification with input data uncertainty;Bi;Proceedings of the Annual Conference on Neural Information Processing Systems,2004

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3