Mitigation of Structural Vibrations of MDOF Oscillators by Modal Coupling Due to Hysteretic Dampers

Author:

Casini Paolo,Vestroni Fabrizio

Abstract

In civil engineering, structural elements characterized by hysteresis are often encountered, such as materials with limited elastic fields, microsliding friction and elastomeric absorbers. Hysteretic nonlinearities produce a wide variety of dynamical phenomena, such as significant modal coupling, bifurcations and superabundant modes. This paper investigates nonlinear modal interactions in the dynamic response of a two-degree-of-freedom system (2DOF) with hysteretic elements. These phenomena are notably important in internal resonance conditions, where modal interactions produce strong modifications in the response with possible beneficial effects. In specific conditions, the transfer of energy between the two modes leads to a notable reduction in the maximum response amplitude; the exploitation of this feature to achieve vibration mitigation of the forced response is the main goal of the paper. Two configurations are investigated: the hysteretic element at the top (vibration damper) and the hysteretic element at the base (isolator). In both cases, several internal resonance conditions occur since, by increasing the excitation intensity, the frequencies of the hysteretic system change, as well as their ratio. Qualitative similar results are obtained, characterized by a transfer of energy between the two modes. For both configurations, the usefulness of exploiting these nonlinear phenomena in vibration mitigation has been shown.

Funder

Ministry of Education, Universities and Research

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3