Asymmetric Etalon Effect in Fold-Type Optical Feedback Cavity-Enhanced Absorption Spectroscopy

Author:

Wang Yunzheng,Guan Shiyu,Cao Huilin,Tan Zhongqi

Abstract

To further improve the performance of cavity-enhanced spectroscopy systems, a high-quality U-cavity system was established. In the process of the experiment, an asymmetric ripple effect, which is different from the previous etalon effect, was found, which seriously affects the performance of the spectral system. This unique phenomenon mainly manifests in the different amplitudes of the fluctuations of the spectral curves measured by the folding mirror and the end mirror in the U-cavity system. Based on multi-beam interference theory, we analyzed the characteristics of the transmission spectrum of each mirror in the presence of the etalon effect at the end mirror, and obtained the following conclusions: for the U-cavity system, the strength of the etalon effect of each mirror is inversely proportional to its transmission loss value, that is, the larger the loss, the smaller the ripple of the transmission spectrum, and vice versa. In order to eliminate this effect, the most effective way is to eliminate the etalon effect caused by the light feedback of the end mirror. After improving the system, the minimum detectable absorption coefficient of αmin=8.33×10−9cm−1 is obtained with this U-shape Optical Feedback Cavity-Enhanced Absorption Spectroscopy. These works are valuable references for the design of folded Cavity-Enhanced Absorption Spectroscopy systems and have potential for laser wavelength calibration and measurement of a mirror’s reflectance.

Funder

National Natural Science Foundation of China

Hunan Provincial Innovation Foundation for Postgraduate

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3