Abstract
Among the various fields where deep learning is used, there are challenges to be solved in motion recognition. One is that it is difficult to manage because of the vast amount of data. Another is that it takes a long time to learn due to the complex network and the large amount of data. To solve the problems, we propose a dataset transformation system. Sign language recognition was implemented to evaluate the performance of this system. The system consists of three steps: pose estimation, normalization, and spatial–temporal map (STmap) generation. STmap is a method of simultaneously expressing temporal data and spatial data in one image. In addition, the accuracy of the model was improved, and the error sensitivity was lowered through the data augmentation process. Through the proposed method, it was possible to reduce the dataset from 94.39 GB to 954 MB. It corresponds to approximately 1% of the original. When the dataset created through the proposed method is trained on the image classification model, the sign language recognition accuracy is 84.5%.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献