Abstract
Recommendation attack attempts to bias the recommendation results of collaborative recommender systems by injecting malicious ratings into the rating database. A lot of methods have been proposed for detecting such attacks. Among these works, the deep learning-based detection methods get rid of the dependence on hand-designed features of recommendation attack besides having excellent detection performance. However, most of them optimize the key hyperparameters by manual analysis which relies too much on domain experts and their experience. To address this issue, in this paper we propose an approach based on the Harris Hawks Optimization (HHO) algorithm to improve the deep learning-based detection methods. Being different from the original detection methods which optimize the key hyperparameters manually, the improved deep learning-based detection methods can optimize the key hyperparameters automatically. We first convert the key hyperparameters of discrete type to continuous type according to the uniform distribution theory to expand the application scope of HHO algorithm. Then, we use the detection stability as an early stop condition to reduce the optimization iterations to improve the HHO algorithm. After that, we use the improved HHO algorithm to automatically optimize the key hyperparameters for the deep learning-based detection methods. Finally, we use the optimized key hyperparameters to train the deep learning-based detection methods to generate classifiers for detecting the recommendation attack. The experiments conducted on two benchmark datasets illustrate that the improved deep learning-based detection methods have effective performance.
Funder
Shandong Provincial Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献