Abstract
In this study, an activity-based travel demand model of the Ústí nad Labem district (Czech Republic) is created. To do this, an advanced travel demand synthesis process is presented by utilizing the Eqasim framework, which is a pipeline-processing, initial raw data to simulation step. The framework is extensively modified and extended with several algorithms in order to utilize multiple data points for increasing realism in mobility for travel demand models. Two major extensions are provided. First, the pipeline framework is improved to estimate inbound and outbound trips of the study area, comprising a main city and 23 surrounding municipalities. The extended framework assigns synthetic gates for the study area as hubs for the inclusion of inbound and outbound trips. Second, the pipeline framework is advanced to provide a more compatible match of travel destination and activity location state. To do this, the extended framework assigns a capacity for each facility identified for the study area, the expected number of visitors to each facility, and the number of residents in each building. The resulting demand model is presented and the generated trips are evaluated based on locational, transport mode, and sociodemographic characteristics with origin–destination (OD) bundling. Additionally, distribution analyses of the present model are conducted to understand the matching results on a detailed level. The results demonstrate that the present model provides a reasonable output for transport researchers when testing different mobility scenarios and the provided extensions helps them to reduce implausible reflections of the distribution of travel and activity characteristics in household travel surveys while creating demand models, thus increasing realism. Lastly, open-source playground and code repository for further future improvement of synthetic travel synthesis methods are created, which enhances a deep understanding of the preparatory and methodological backgrounds required for complex activity-based simulations in order to inspire transport planners.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献