Numerical Investigation on the Principle of Energy Separation in the Vortex Tube

Author:

Park Seol Yeon,Yoon Sang Hee,Yu Sang Seok,Kim Byoung JaeORCID

Abstract

A vortex tube is a simple device that separates incoming gas into cold and hot gases. Several theories have been proposed to explain the principle of energy separation in the vortex tube. Existing theories have advantages and defects. Recently, various studies employed numerical simulations to study the flow in the vortex tube. As a result, flow structures were well clarified. However, in most cases, the temperature separation was partially discussed based on the temperature distribution in the radial direction. This study aimed to explain the principle of energy separation in the vortex tube. To do so, the relative contributions of the radial pressure gradient, axial pressure gradient, and viscous dissipation to the temperature separation were investigated using numerical simulations and energy equation analysis. The results indicated that the axial pressure gradient in the near-axis region was the major contributor to an increase in hot exit temperature. In addition, the reason for the increase in hot exit temperature with an increase in cold mass fraction was explained. The reason for the decrease in cold exit temperature with an increase in cold mass fraction was also explained.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3