Extracting Fingerprint Features Using Autoencoder Networks for Gender Classification

Author:

Qi YongORCID,Qiu MengzheORCID,Jiang HefeifeiORCID,Wang FeiyangORCID

Abstract

The fingerprint is an important biological feature of the human body, which contains abundant biometric information. At present, the academic exploration of fingerprint gender characteristics is generally at the level of understanding, and the standardization research is quite limited. A robust approach is presented in this article, Dense Dilated Convolution ResNet Autoencoder, to extract valid gender information from fingerprints. By replacing the normal convolution operations with the atrous convolution in the backbone, prior knowledge is provided to keep the edge details, and the global reception field can be extended. The results were explored from three aspects: (1) Efficiency of DDC-ResNet. We conducted experiments using a combination of 6 typical automatic feature extractors with 9 classifiers for a total of 54 combinations are evaluated in our dataset; the experimental results show that the combination of methods we used achieved an average accuracy of 96.5%, with a classification accuracy of 97.52% for males and 95.48% for females, which outperformed the other experimental combinations. (2) The effect of the finger. The results showed that the right ring finger was the most effective for finger classification by gender. (3) The effect of specific features. We used the Class Activating Mapping method to plot fingerprint concentration thermograms, which allowed us to infer that fingerprint epidermal texture features are related to gender. The results demonstrated that autoencoder networks are a powerful method for extracting gender-specific features to help hide the privacy information of the user’s gender contained in the fingerprint. Our experiments also identified three levels of features in fingerprints that are important for gender differentiation, including loops and whorls shape, bifurcations shape, and line shapes.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference22 articles.

1. Fingerprint Gender Classification using Univariate Decision Tree (J48)

2. Support Vector Machine, Multilayer Perceptron Neural Network, Bayes Net and k-Nearest Neighbor in Classifying Gender using Fingerprint Features;Abdullah;Int. J. Comput. Sci. Inf. Secur.,2016

3. Fingerprint gender classification using wavelet transform and singular value decomposition;Gnanasivam;arXiv,2012

4. Fingerprint based gender classification using discrete wavelet transform & artificial neural network;Gupta;Int. J. Comput. Sci. Mob. Comput.,2014

5. A Novel Technique for Fingerprint Classification based on Naive Bayes Classifier and Support Vector Machine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3