A High-Precision Method for Evaluating Sector Capacity in Bad Weather Based on an Improved WITI Model

Author:

Huang Shiyu,Xu Lin,Zhou Yuzhi,Qiao Yujie,Shen ZhiyuanORCID

Abstract

The rapid development of the civil aviation industry has increased the pressure on airspace resources in China. The traditional sector capacity assessment method does not take into account the impact of bad weather, resulting in flight plans often deviating markedly from the predicted plans, causing flight delays and affecting the punctuality rate of flights. To solve this issue, we propose a novel evaluation method based on an improved Weather-Impacted Traffic Index (WITI) model to calculate sector capacity. The WITI model is optimized in order to calculate the weather-influence coefficients under different types of bad weather. These coefficients were also considered in a controller workload model. Finally, the model was trained using a deep-neural-network algorithm, which is combined with a linear regression algorithm to calculate sector capacity under different bad weather conditions. The novel approach leads to the output results being within a specified error range, which greatly improves their accuracy. This method was applied to the actual case data of Yinchuan Hedong International Airport to consider different types of bad weather and quantify their severity, which more specifically assesses the sector capacity under the condition of bad weather.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference21 articles.

1. Statistical Bulletin on the Development of Civil Aviation Industry in 2019;Civil Aviation Administration of China,2020

2. A probabilistic framework for weather-based rerouting and delay estimations within an Airspace Planning model

3. Human Performance Engineering: Designing High Quality, Professional User Interfaces for Computer Products Applications and Systems;Bailey,1996

4. Terminal airspace capacity model

5. En Route Sector Capacity Model

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3