Deep Anomaly Detection for In-Vehicle Monitoring—An Application-Oriented Review

Author:

Caetano FranciscoORCID,Carvalho PedroORCID,Cardoso JaimeORCID

Abstract

Anomaly detection has been an active research area for decades, with high application potential. Recent work has explored deep learning approaches to the detection of abnormal behaviour and abandoned objects in outdoor video surveillance scenarios. The extension of this recent work to in-vehicle monitoring using solely visual data represents a relevant research opportunity that has been overlooked in the accessible literature. With the increasing importance of public and shared transportation for urban mobility, it becomes imperative to provide autonomous intelligent systems capable of detecting abnormal behaviour that threatens passenger safety. To investigate the applicability of current works to this scenario, a recapitulation of relevant state-of-the-art techniques and resources is presented, including available datasets for their training and benchmarking. The lack of public datasets dedicated to in-vehicle monitoring is addressed alongside other issues not considered in previous works, such as moving backgrounds and frequent illumination changes. Despite its relevance, similar surveys and reviews have disregarded this scenario and its specificities. This work initiates an important discussion on application-oriented issues, proposing solutions to be followed in future works, particularly synthetic data augmentation to achieve representative instances with the low amount of available sequences.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference70 articles.

1. An Overview of Deep Learning Based Methods for Unsupervised and Semi-Supervised Anomaly Detection in Videos

2. Detecting anomalous events in videos by learning deep representations of appearance and motion

3. Future frame prediction for anomaly detection–a new baseline;Liu;Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018

4. A revisit of sparse coding based anomaly detection in stacked rnn framework;Luo;Proceedings of the IEEE International Conference on Computer Vision,2017

5. Automotive interior sensing-towards a synergetic approach between anomaly detection and action recognition strategies;Augusto;Proceedings of the 2020 IEEE 4th International Conference on Image Processing, Applications and Systems (IPAS),2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3