A New Enhancement Edge Detection of Finger-Vein Identification for Carputer System

Author:

Hsia Chih-HsienORCID,Yang Zi-Han,Wang Hong-Jyun,Lai Kuei-Kuei

Abstract

Developments in multimedia and mobile communication technologies and in mobilized, personalized information security has benefitted various sectors of society, as traditional identification technologies are often complicated. In response to the sharing economy and the intellectualization of automotive electronics, major automobile companies are using biometric recognition to enhance the safety, uniqueness, and convenience of their vehicles. This study uses a deep learning-based finger-vein identification system for carputer systems. The proposed enhancement edge detection adapts to the detected fingers’ rotational and translational movements and to interference from external light and other environmental factors. This study also determines the effect of preprocessing methods on the system’s effectiveness. The experimental results demonstrate that the proposed system allows more accurate identification of 99.1% and 98.1% in various environments, using the FV-USM and SDUMLA-HMT public datasets. As results, the contribution of system is high accuracy and stability for more sanitary, contactless applications makes it eminently suited for use during the COVID-19 pandemic.

Funder

Ministry of Science and Technology of the People's Republic of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference33 articles.

1. Near field communication (NFC) in an automotive environment;Steffen;Proceedings of the IEEE International Workshop on Near Field Communication,2010

2. Design of automobile intelligence control platform based on bluetooth low energy;Xia;Proceedings of the IEEE Region 10 Conference,2016

3. Contactless Multispectral Palm-Vein Recognition With Lightweight Convolutional Neural Network

4. Explainable AI: A Multispectral Palm-Vein Identification System with New Augmentation Features

5. Improved Finger-Vein Pattern Method Using Wavelet-based for Real-Time Personal Identification System

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3