A New Tree-Level Multi-Objective Forest Harvest Model (MO-PSO): Integrating Neighborhood Indices and PSO Algorithm to Improve the Optimization Effect of Spatial Structure

Author:

Qiu Hanqing123ORCID,Zhang Huaiqing123,Lei Kexin123,Hu Xingtao4,Yang Tingdong123,Jiang Xian123

Affiliation:

1. Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China

2. Key Laboratory of Forest Management and Growth Modelling, NFGA, Beijing 100091, China

3. National Long term Scientific Research Base of Huangfengqiao Forest Monitoring and Simulation in Hunan Province, Beijing 100091, China

4. School of Geography and Environmental Sciences, Guizhou Normal University, Guiyang 550025, China

Abstract

Accurate, efficient, impersonal harvesting models play a very important role in optimizing stand spatial structural and guiding forest harvest practices. However, existing studies mainly focus on the single-objective optimization and evaluation of forest at the stand- or landscape-level, lacking considerations of tree-level neighborhood interactions. Therefore, the study explored the combination of the PSO algorithm and neighborhood indices to construct a tree-level multi-objective forest harvest model (MO-PSO) covering multi-dimensional spatial characteristics of stands. Taking five natural secondary forest plots and thirty simulated plots as the study area, the MO-PSO was used to simulate and evaluate the process of thinning operations. The results showed that the MO-PSO model was superior to the basic PSO model (PSO) and random thinning model Monte Carlo-based (RD-TH), DBH dominance (DOMI), uniform angle (ANGL), and species mingling (MING) were better than those before thinning. The multi-dimensional stand spatial structure index (L-index) increased by 1.0%~11.3%, indicating that the forest planning model (MO-PSO) could significantly improve the spatial distribution pattern, increase the tree species mixing, and reduce the degree of stand competition. In addition, under the four thinning intensities of 0% (T1), 15% (T2), 30% (T3), and 45% (T4), L-index increased and T2 was the optimal thinning intensity from the perspective of stand spatial structure overall optimization. The study explored the effect of thinning on forest spatial structure by constructing a multi-objective harvesting model, which can help to make reasonable and scientific forest management decisions under the concept of multi-objective forest management.

Funder

the National Natural Science Foundation of China

the Foundation Research Funds of IFRIT

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3